

DATA SHEET

SDN8080G 80-outputs common/segment driver

To improve design and/or performance, Avant Electronics may make changes to its products. Please contact Avant Electronics for the latest versions of its products

data sheet (v7) 2006 Apr 04

80-outputs common/segment driver

1 GENERAL

1.1 Description

The SDN8080G is a COMMON/SEGMEMT driver for large-panel dot-matrix STN LCD module. It can be used either as a COMMON driver or as a SEGMENT driver, by connecting its CS input to VDD or VSS.

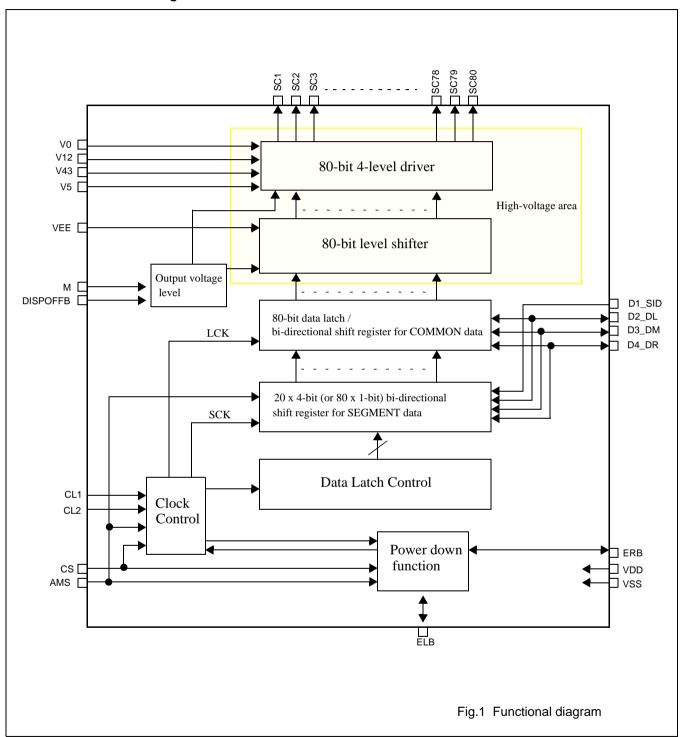
When its CS input is connected to VDD, the SDN8080G is an 80-COMMON driver. When its CS input is connected to VSS, the SDN8080G is an 80-SEGMENT driver.

1.2 Features

- Operating voltage range (VDD-VSS, control logic): 2.7 ~ 5.5 volts.
- LCD bias voltage range (VDD-VEE): 6 ~ 28 volts.
- 80-SEGMENT driver or 80-COMMON driver, via CS-pin selection.
- When used as a SEGMENT driver, 4-bit parallel or 1-bit serial interface with a controller.
- When used as a COMMON driver, two modes of operation are available: Single mode or Dual mode.
- Display duty cycle: 1/64 ~ 1/256.
- · LCD on/off control, when used as SEGMENT driver.
- External 4-level LCD bias voltage.
- Operating frequency range: 8 MHz, when VDD= 5 volts.
- Operating temperature range: -30 to +85 °C.
- Storage temperature range: -55 to +150 °C.

80-outputs common/segment driver

2 ORDERING INFORMATION


 Table 1
 Ordering information

TYPE NUMBER	DESCRIPTION
SDN8080G-LQFPG	LQFP100 Pb-free package.
SDN8080G-QFPG	QFP100 Pb-free package.
SDN8080G-LQFP	LQFP100 general package.
SDN8080G-QFP	QFP100 general package.
SDN8080G-D	Tested die.

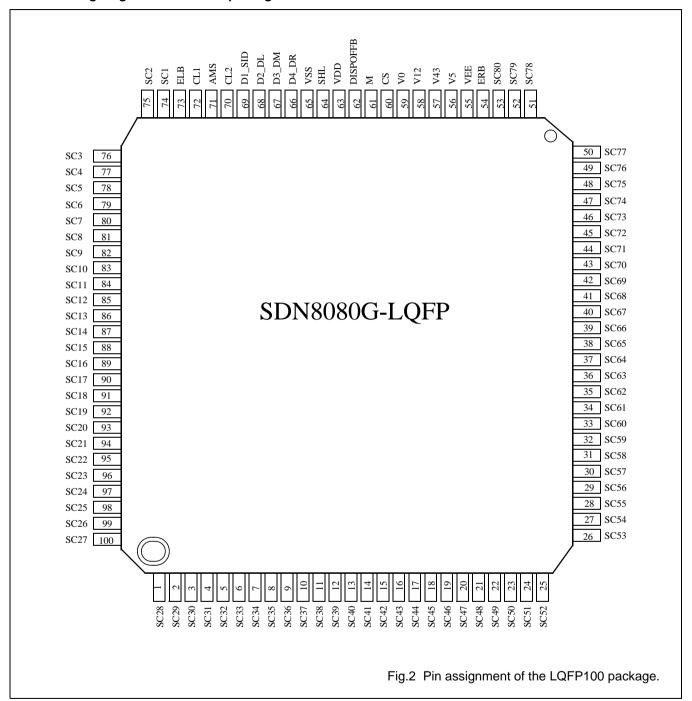
80-outputs common/segment driver

3 FUNCTIONAL BLOCK DIAGRAM AND DESCRIPTION

3.1 Functional block diagram

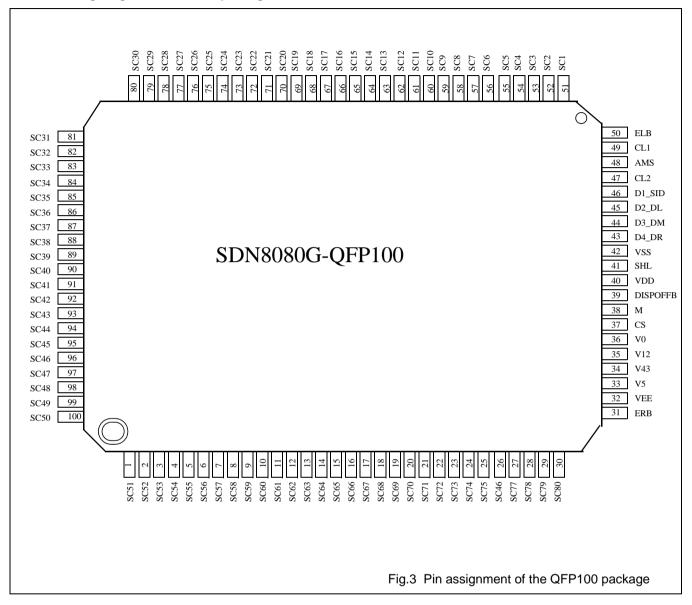
80-outputs common/segment driver

3.2 Block description

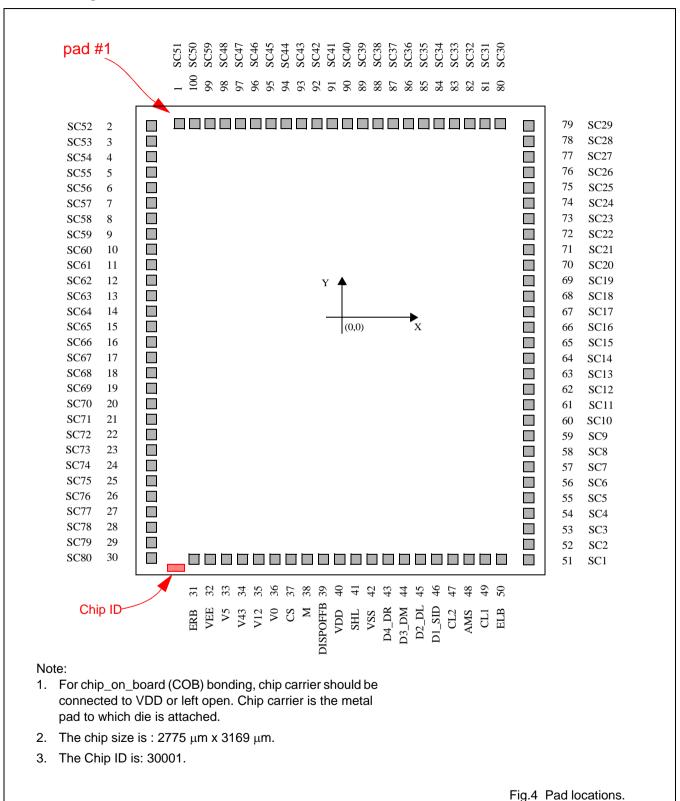

Table 2 Block description

NAME	COM/SEG	DESCRIPTION
Clock control	COM/SEG	Inputs to this block are external signals CL1, CL2, CS, and AMS. It generates latch clock (LCK) and shift clock (SCK). SCK is used to shift display data into the 20 x 4-bit bi-directional shift register for SEGMENT data.
Data latch control	SEG	This block controls shift direction of the 20 x 4-bit shift register and selects its input data pins.
		In COMMON driver application, this block is disabled.
Power down function	SEG	This block enables or disables Clock Control block according to ERB/ELB input.
Output level selector	COM/SEG	Controls the output voltage level according to input signals M and DISPOFFB.
		This is the bi-directional 20 x 4-bit (80-bits) shift register for SEGMEMT data.
20 x 4-bit bi-directional shift register for SEGMENT data	SEG	In 1-bit serial interface mode of SEGMEN driver application, 80 SCK clocks are needed to shift in 80-bit data. In 4-bit parallel interface mode, only 20 SCK clocks are needed to shift in 80-bit data.
		In COMMON driver application, this block is disabled.
		In SEGMENT driver application, this block is used as an 80-bit data latch and the 80-bit data of the SEGMENT driver are latched into this latch for output.
80-bit data latch, or bi-directional shift register for	COM/SEG	In single type COMMON driver application, this block is used as an 80-bit shift register. Depending on the value of SHL, 1-bit serial data is shifted into D2_DL or D4_DR.
register for COMMON data		In dual type COMMON driver application, depending on the value of SHL, the 80-bits shift register is divided into two sections with each section having 40-bits. Data are then shifted into the shift register via D2_DL and D3_DM, or D3_DM and D4_DR. Please refer to Table 6 and Table 7.
80-bit level shifter	SEG	This block translates signals from logical voltage to high voltage for driving the STN LCD panel.
80-bit 4-level driver	SEG	Selects output voltage levels according to M and the latched data value.

80-outputs common/segment driver


4 PINNING DIAGRAMS

4.1 Pinning diagram of LQFP100 package


80-outputs common/segment driver

4.2 Pinning diagram of QFP100 package

80-outputs common/segment driver

4.3 Pad diagram

80-outputs common/segment driver

4.4 Pad description

 $\begin{tabular}{ll} \textbf{Table 3} & Pad signal names and coordinates \\ The unit for coordinates is μm. \\ \end{tabular}$

PAD NO.	PAD NAME	COORI	DINATES	PAD NO.	PAD NAME	COORD	COORDINATES		PAD NAME	COORD	INATES
NO.	INAIVIE	Х	Y	NO.	NAIVIE	Х	Υ	NO.	NAIVIE	Х	Υ
1	SC51	-1103	1467	35	V12	-565	-1472	69	SC19	1280	409
2	SC52	-1280	1459	36	V0	-456	-1472	70	SC20	1280	514
3	SC53	-1280	1354	37	CS	-331	-1472	71	SC21	1280	619
4	SC54	-1280	1249	38	М	-224	-1472	72	SC22	1280	724
5	SC55	-1280	1144	39	DISPOFFB	-118	-1472	73	SC23	1280	829
6	SC56	-1280	1039	40	VDD	-12	-1472	74	SC24	1280	934
7	SC57	-1280	934	41	SHL	95	-1472	75	SC25	1280	1039
8	SC58	-1280	829	42	VSS	208	-1472	76	SC26	1280	1144
9	SC59	-1280	724	43	D4_DR	321	-1472	77	SC27	1280	1249
10	SC60	-1280	619	44	D3_DM	427	-1472	78	SC28	1280	1354
11	SC61	-1280	514	45	D2_DL	534	-1472	79	SC29	1280	1459
12	SC62	-1280	409	46	D1_SID	640	-1472	80	SC30	1102	1467
13	SC63	-1280	304	47	CL2	746	-1472	81	SC31	997	1467
14	SC64	-1280	199	48	AMS	853	-1472	82	SC32	892	1467
15	SC65	-1280	94	49	CL1	959	-1472	83	SC33	787	1467
16	SC66	-1280	-11	50	ELB	1065	-1472	84	SC34	682	1467
17	SC67	-1280	-116	51	SC1	1280	-1482	85	SC35	577	1467
18	SC68	-1280	-221	52	SC2	1280	-1376	86	SC36	472	1467
19	SC69	-1280	-326	53	SC3	1280	-1271	87	SC37	367	1467
20	SC70	-1280	-431	54	SC4	1280	-1166	88	SC38	262	1467
21	SC71	-1280	-536	55	SC5	1280	-1061	89	SC39	157	1467
22	SC72	-1280	-641	56	SC6	1280	-956	90	SC40	52	1467
23	SC73	-1280	-746	57	SC7	1280	-851	91	SC41	-53	1467
24	SC74	-1280	-851	58	SC8	1280	-746	92	SC42	-158	1467
25	SC75	-1280	-956	59	SC9	1280	-641	93	SC43	-263	1467
26	SC76	-1280	-1061	60	SC10	1280	-536	94	SC44	-368	1467
27	SC77	-1280	-1166	61	SC11	1280	-431	95	SC45	-473	1467
28	SC78	-1280	-1271	62	SC12	1280	-326	96	SC46	-578	1467
29	SC79	-1280	-1376	63	SC13	1280	-221	97	SC47	-683	1467
30	SC80	-1280	-1481	64	SC14	1280	-116	98	SC48	-788	1467
31	ERB	-1016	-1472	65	SC15	1280	-11	99	SC49	-893	1467
32	VEE	-894	-1472	66	SC16	1280	94	100	SC50	-998	1467
33	V5	-784	-1472	67	SC17	1280	199				
34	V43	-678	-1472	68	SC18	1280	304				

80-outputs common/segment driver

4.5 Signal description

Table 4 Pad signal description.

To avoid a latch-up effect at power-on: V_{SS} – 0.5 V < voltage at any pin at any time < V_{DD} + 0.5 V .

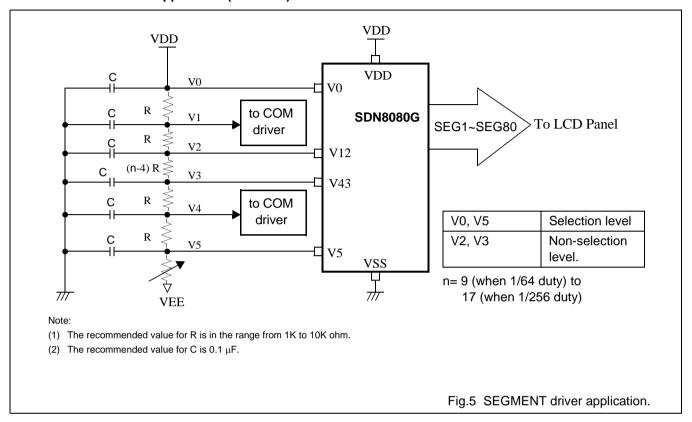
SYMBOL	1/0	Interface to/from				DESCRIPTION								
V0, V12, V43, V5	input	power	Exte	External bias voltage for LCD driver.										
SC1~SC80	output	LCD	SEG	MENT or Co	OMMON di	iver outputs.								
				EGMENT dr ectional shi		ation mode, CL2 is the shifting clo	ock of the 20 x	4-bit						
CL2	input	controller				tion mode, this clock is not used. ON data bi-directional shift regist		ıta is						
			drive	This input has an internal pull-high PMOS. When the device is used as COMMON driver, the PMOS is turned on to internally pull this input to HIGH and this pin should therefore be left open or connected to VDD. Please refer to Section 13.										
М	input	controller	Alter	nating signa	l for genera	ating alternating LCD-bias voltag	e.							
CL1	input	controller				ation mode, the 80-bits display da dge of this clock.	ata is latched in	to the						
OLI	прис	CONTROLL		OMMON driv ut data.	ver applica	tion mode, CL1 is used as shiftin	g clock of COM	IMON						
DISPOFFB	input	controller		ng the LOW lisplay is the		nis signal, V0 is selected as SC0- ed off.	~SC80's output	s and						
cs	input	VDD/VSS	drive	r.		the SDN8080G is used as an 80 the SDN8080G is used as an 80	·							
			drive		,									
			Appli	ication Mode	e Selection									
			_			input is used to configure SDN8 in the following table.	080G into diffe	rent						
				CS	AMS	application mode	COM/SEG							
AMS	input	input VDD/VSS	input VDD/VSS	input VDD/VSS		0	0	4-bit parallel data interface with a controller.	SEG					
	·										0	1	1-bit serial data interface with a controller.	SEG
				1	0	Single-type application mode	СОМ							
				1	1	Dual-type application mode	COIVI							

80-outputs common/segment driver

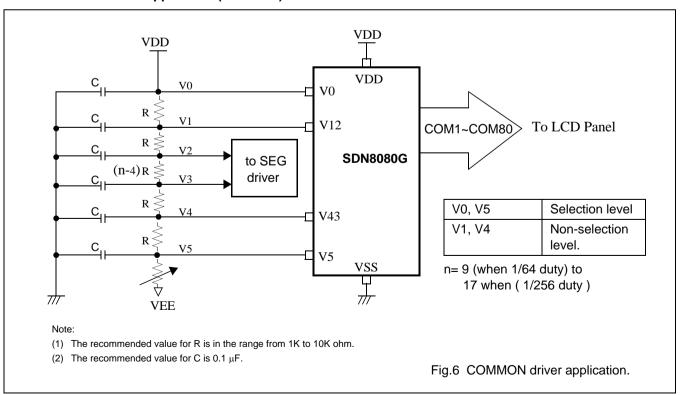
SYMBOL	I/O	Interface to/from			DESCRIPTION				
				GMENT Driver mode a ted, these 4 inputs are t	-	ata interface mode is ata input from a controller.			
D1_SID, D2_DL, D3_DM, D4_DR	I/O, D2, D4.		D1_S	In SEGMENT driver mode and when 1-bit serial interface mode is selected, D1_SID is used as serial data input from a controller. In this application, all other 3 inputs must be connected to VDD.					
	Input, D1, D3	controller	COM		ed from D2_DL to D4_[lication mode is selected, DR or from D4_DR to D2_DL,			
			COM	In COMMON driver mode and when dual-type application mode is selected, COMMON scan pulse is shifted from D2_DL and D3_DM to D4_DR, or from D4_DR and D3_DM to D2_DL, depending on the logic state of SHL.					
				Shift direction control.					
SHL	input	VDD/VSS	When this input is connected to VSS, data shift direction is from left to right. This input is connected to VDD, data shift direction is from right to left. Please to Table 6 and Table 7.						
			interr ERB) enab	nal operation of the SDN	8080G is enabled only eral SDN8080G are coure serially enabled. The	Tdriver application mode, the when its enable input (ELB or nnected in cascade, their e enabling sequence is			
ELB, ERB	input/	cascade		SHL	Segme	nt Driver			
LLD, END	output	cascaue		SIL	ELB	ERB			
				L	Output	Input			
				Н	Input	Output			
			In CC	• • • • • • • • • • • • • • • • • • • •	on, these two pins are r	not used and should be left			

80-outputs common/segment driver

5 OUTPUT VOLTAGE LEVEL


Table 5 Output voltage level

8.4	LATCHED	DISDOFFR	OUTPUT LEVEL(SC1-SC80)	OUTPUT LEVEL(SC1-SC80)
M	DATA	DISPOFFB	SEGMENT MODE	COMMON MODE
L	L	Н	V12(V2)	V12(V1)
L	Н	Н	VO	V5
Н	L	Н	V43(V3)	V43(V4)
Н	Н	Н	V5	VO
x(don't care)	x(don't care)	L	VO	VO


80-outputs common/segment driver

6 LCD BIAS VOLTAGE

6.1 SEGMENT driver application (CS=LOW)

6.2 COMMON driver application (CS=HIGH)

80-outputs common/segment driver

7 DATA SHIFT DIRECTION AND DATA PIN I/O SELECTION

 Table 6
 Data shift direction in SEGMENT driver application (CS=LOW).

AMS	SHL	Application mode	DATA SHIFT DIRECTION	INPUT PIN(PAD)
L	da	4-bit parallel	S S S S S S S S S S S S S S S S S S S	D1_SID, D2_DL,
L	н	interface mode	S S S S S S S S S S S S S S S S S S S	D3_DM, D4_DR
н	L	1-bit serial data	S S S S S S S S S S S S S S S S S S S	D1_SID
	Н	interface mode	S S S S S S S S S S S S S S S S S S S	_

80-outputs common/segment driver

 Table 7
 Data shift direction in COMMON driver application (CS=HIGH)

AMS	SHL	Application mode	DATA SHIFT DIRECTION	Input pin(pad)
	L	Single-type application mode	Shift direction S S S S S C C C C C C C C C C C C C C	D2_DL
L	Н		Shift direction S S S S C C C C C C C C C C C C C C C	D4_DR
	L	dual-type	Shift direction S S S S S C C C C C C C C C C C C C C	D2_DL, D3_DM
Н	Н	application mode	Shift direction S S S S C C C C C C C C C C C C C C C	D4_DR, D3_DM

80-outputs common/segment driver

 Table 8
 Application of I/O data pins D1_SID, D2_DL, D3_DM, and D4_DR.

COM/SEG	Application mode	01.11	Data interface pins				
(CS pin)	(AMS pin)	SHL	D1_SID	D2_DL	D3_DM	D4_DR	
SEG (CS=LOW)	4-bit parallel interface mode (AMS=LOW)	Х	D1 (input)	D2 (input)	D3 (input)	D4 (input)	
(00=2011)	1-bit serial interface mode (AMS=HIGH)	Х	D1_SID		onnected to VDD.		
СОМ	single-type application	L	Open	D2_DL (input)	opon	D4_DR (output)	
(CS=HIGH)	mode (AMS=LOW)	Н	Open	D2_DL (output)	open	D4_DR (input)	
	dual-type application	L	Open	D2_DL (input1)	D3_DM (input2)	D2_DR (output2)	
	mode (AMS=HIGH)	Н	Open	D2_DL (output2)	D3_DM (input2)	D4_DR (input1)	

80-outputs common/segment driver

8 ELECTRICAL CHARACTERISTICS

8.1 Absolute maximum rating

Table 9 Absolute maximum rating

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	voltage on the VDD input.	-0.3	+7.0	V
V_{LCD}	voltage difference between VDD and VEE.	0.0	+30.0	V
V _I (note 1)	input voltage on any pin with respect to V _{SS}	-0.3	V _{DD} + 0.3	V
I _I , I _O	input/output current on any I/O pin	_	±15	mA
P _{tot}	total power dissipation (note 2)	_	1.5	W
T _{stg}	storage temperature range	-55	+150	°C
T _{amb}	operating ambient temperature range.	-30	+ 85	°C

Notes

- 1. The following applies to the Absolute Maximum Ratings:
 - a) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device.
 - b) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effect of excessive static charge. However, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.
 - Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect
 to V_{SS} unless otherwise noted.
- 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package, not on device power consumption.

80-outputs common/segment driver

8.2 DC characteristics for SEGMENT driver application

Table 10 DC Characteristics for SEGMENT driver application

 $V_{DD} = 5 \text{ V} \pm 10\%$; $V_{SS} = 0 \text{ V}$; all voltages with respect to V_{SS} unless otherwise specified; $T_{amb} = -30$ to +85 °C.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage	Control logic circuit	2.7	5.5	V
V_{LCD}	supply voltage for LCD	V _{LCD} = VDD - VEE	6	28	V
V _{IL}	LOW level input voltage	note 1	0	0.2V _{DD}	V
V _{IH}	HIGH level input voltage	note 1	0.8V _{DD}	V_{DD}	V
V _{OL}	LOW level output voltage	I _{OL} = 0.4 mA; note 2	_	0.4	V
V _{OH}	HIGH level output voltage	I _{OH} = -0.4 mA; note 2	V _{DD} - 0.4		V
I _{LI1}	input leakage current of input pins	note 1	-10	10	μΑ
I _{LI2}	input leakage current of V0~V5	note 3	-25	+25	μΑ
I _{STBY}	Standby current at VDD=5 volts	note 4		100	μΑ
I _{STBY}	Standby current at VDD=3 volts	note 5		100	μΑ
I _{DD(VDD=5V)}	Operating current at VDD=5 volts	note 6		5	mA
I _{DD(VDD=3V)}	Operating current at VDD=3 volts	note 7		2	mA
I _{EE}	High-voltage operating current.	note 8		500	μΑ
R _{ON}	ON resistance	I _{ON} = 100μA, note 9	2K (typ.), 4k	(max.)	Ω

Notes to the DC characteristics:

- 1. Measured for the following pins: CL1, CL2, ELB, ERB, D1_SID, D2_DL, D3_DM, D4_DR, SHL, DISPOFFB, M, CS, and AMS.
- 2. Measured for the ERB pin and the ELB pin.
- 3. Measured for V0, V12, V43, and V5.
- Conditions for the measurement: VDD=5V, V0=VDD, V12=1.71 V, V43= -19.71 V, V5=VEE= -23 V, F_{CL1}=32 KHz, F_{CL2}=5.12 MHz, SHL=VSS, DISPLAYOFFB=VDD, M=VSS, AMS=0, no-load condition (1/256 duty, 1/17 bias), display data pattern= 0000.
- Conditions for the measurement: VDD=3V, V0=VDD, V12=-0.06 V, V43= -19.94 V, V5=VEE= -23 V, F_{CL1}=32 KHz, F_{CL2}=5.12 MHz, SHL=VSS, DISPLAYOFFB=VDD, M=VSS, AMS=0, no-load condition (1/256 duty, 1/17 bias), display data pattern= 0000.
- Conditions for the measurement: VDD=5V, V0=VDD, V12=1.71 V, V43= -19.71 V, V5=VEE= -23 V, F_{CL1}=32 KHz, F_{CL2}=5.12 MHz, SHL=VSS, DISPLAYOFFB=VDD, F_M=80 Hz, AMS=0, no-load condition (1/256 duty, 1/17 bias), display data pattern= 01010.
- Conditions for the measurement: VDD=3V, V0=VDD, V12=-0.06 V, V43= -19.94 V, V5=VEE= -23 V, F_{CL1}=32 KHz, F_{CL2}=4 MHz, SHL=VSS, DISPLAYOFFB=VDD, F_M=80 Hz, AMS=0, no-load condition (1/256 duty, 1/17 bias), display data pattern= 01010.
- 8. Conditions for the measurement: VDD=5V, V0=VDD, V12=1.71 V, V43= -19.71 V, V5=VEE= -23 V, F_{CL1} =32 KHz, F_{CL2} =5.12 MHz, SHL=VSS, DISPLAYOFFB=VDD, F_{M} =80 Hz, AMS=0, no-load condition (1/256 duty, 1/17 bias), display data pattern= 01010. Measured at VEE pin.
- 9. Conditions for the measurement: VLCD=VDD-VEE, V0=VDD=5V, V5=VEE=-23V, V12= VDD (2/N) x VLCD, V43=VEE + (2/N) x VLCD, N=17 (1/256 duty, 1/17 bias).

2006 Apr 04 18 of 40 data sheet (v7)

80-outputs common/segment driver

8.3 DC characteristics for COMMON driver application

Table 11 DC Characteristics for COMMON driver application

 $V_{DD} = 5 \text{ V} \pm 10\%$; $V_{SS} = 0 \text{ V}$; all voltages with respect to V_{SS} unless otherwise specified; $T_{amb} = -30$ to +85 °C.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage	Control logic part	2.7	5.5	V
V_{LCD}	supply voltage for LCD	V _{LCD} = VDD - VEE	6	28	V
V _{IL}	LOW level input voltage	note 1	0	0.2V _{DD}	V
V _{IH}	HIGH level input voltage	note 1	0.8V _{DD}	V_{DD}	V
V _{OL}	LOW level output voltage	I _{OL} = 0.4 mA; note 2	_	0.4	V
V _{OH}	HIGH level output voltage	I _{OH} = -0.4 mA; note 2	$V_{DD} - 0.4$		V
I _{LI1}	input leakage current of input pins	note 1	-10	10	μΑ
I _{LI2}	input leakage current of V0~V5 pins	note 3	-25	+25	μΑ
I _{LI3}	input leakage current of input pins with internal pull-up MOS.	note 4	-25	+25	μА
I _{STBY}	Standby current at VDD=5 volts	note 5		100	μΑ
I _{STBY}	Standby current at VDD=3 volts	note 6		100	μΑ
I _{DD(VDD=5V)}	Operating current at VDD=5 volts	note 7		200	μΑ
I _{DD(VDD=3V)}	Operating current at VDD=3 volts	note 8		120	μΑ
I _{EE}	High-voltage operating current.	note 9		500	μΑ
R _{ON}	ON resistance	I _{ON} = 100μA, note 10	2K (typ.), 4	K (max.)	Ω

Notes to the DC characteristics

- Measured for the following input pins: CL1, D2_DL(when SHL=LOW), D4_DR(when SHL=HIGH), SHL, DISPOFFB, M, CS, and AMS.
- 2. Measured for the following output pins: D2_DL(when SHL=HIGH) and D4_DR(when SHL=LOW).
- 3. Measured for V0, V12, V43, and V5.
- 4. Measured for the following input pins with internal pull-up: CL2, D1_SID, D3_DM(AMS=HIGH), ELB(SHL=LOW), ERB(SHL=HIGH).
- Conditions for the measurement: VDD=5V, V0=VDD, V12=3.35 V, V43= -21.35 V, V5=VEE= -23 V, F_{CL1}=32 KHz, F_{CL2}=disabled, SHL=VSS, DISPLAYOFFB=VDD, D2_DL=M=VSS, AMS=0, no-load condition (1/256 duty, 1/17 bias), D1_SID=D3_DM=VDD, D4_DR=ELB=ERB=OPEN.
- Conditions for the measurement: VDD=5V, V0=VDD, V12=1.47 V, V43= -21.47 V, V5=VEE= -23 V, F_{CL1}=32 KHz, F_{CL2}=disabled, SHL=VSS, DISPLAYOFFB=VDD, D2_DL=M=VSS, AMS=0, no-load condition (1/256 duty, 1/17 bias), D1_SID=D3_DM=VDD, D4_DR=ELB=ERB=OPEN.
- Conditions for the measurement: VDD=5V, V0=VDD, V12=3.35 V, V43= -21.35 V, V5=VEE= -23 V, F_{CL1}=32 KHz, F_{CL2}=disabled, SHL=VSS, DISPLAYOFFB=VDD, D2_DL=VDD, f_M=80Hz, AMS=0, no-load condition (1/256 duty, 1/17 bias), D1_SID=D3_DM=VDD, D4_DR=ELB=ERB=OPEN.
 Display data pattern= 10000000..., 01000000..., 00100000..., 00010000.
- 8. Conditions for the measurement: VDD=3V, V0=VDD, V12=1.47 V, V43= -21.47 V, V5=VEE= -23 V, F_{CL1} =32 KHz, F_{CL2} =disabled, SHL=VSS, DISPLAYOFFB=VDD, D2_DL=VDD, f_M =80Hz, AMS=0, no-load condition (1/256 duty, 1/17 bias), D1_SID=D3_DM=VDD, D4_DR=ELB=ERB=OPEN. Display data pattern= 10000000..., 01000000..., 00100000...
- Conditions for the measurement: VDD=5V, V0=VDD, V12=3.35 V, V43= -21.35 V, V5=VEE= -23 V, F_{CL1}=32 KHz, F_{CL2}=disabled, SHL=VSS, DISPLAYOFFB=VDD, D2_DL=VDD, f_M=80Hz, AMS=0, no-load condition (1/256 duty, 1/17 bias), D1_SID=D3_DM=VDD, D4_DR=ELB=ERB=OPEN.

2006 Apr 04 19 of 40 data sheet (v7)

80-outputs common/segment driver

Display data pattern= 10000000..., 01000000..., 00100000..., 00010000. Measured at the VEE pin (that is, current flowing through the VEE pad).

10. VLCD= VDD-VEE, V0=VDD=5 volts, V5=VEE=-23 volts. V12= VDD- (1/N) x VLCD, V43= VEE+ (1/N) x VLCD, N=17(1/256 duty, 1/17 bias).

8.4 AC characteristics for SEGMENT driver application

Table 12 AC characteristics for SEGMENT driver application

 $V_{DD} = 5 \text{ V} \pm 10\%$; $V_{SS} = 0 \text{ V}$; $T_{amb} = -30 \text{ °C to } +85 \text{°C}$.

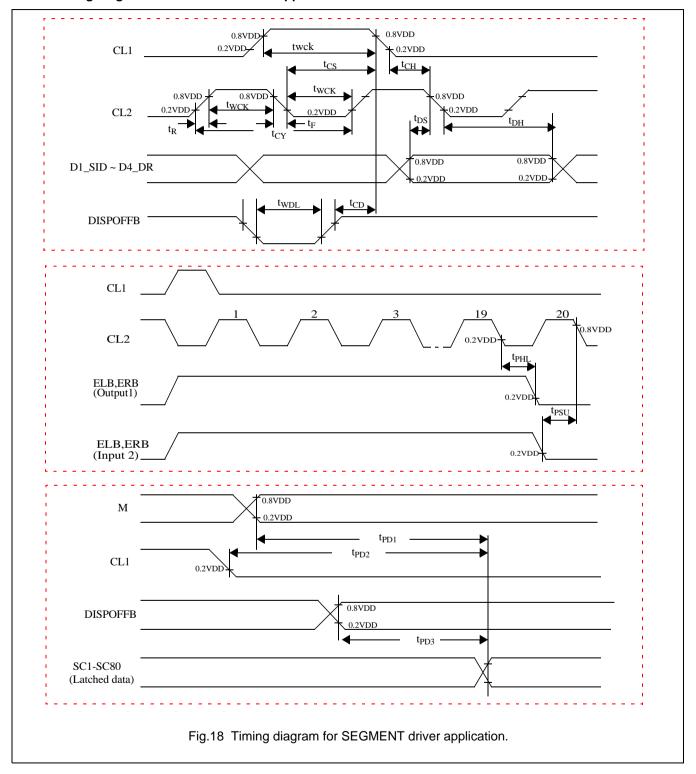
0)/440.01	DADAMETED	VDD=5V±10%			VDD=3	3V±10%	Test	
SYMBOL	PARAMETER	MIN.	TYP	MAX.	MIN.	MAX.	condition	UNIT
t _{CY}	Clock cycle time	125			250		Duty=50%	ns
t _{WCK}	Clock pulse width	45			95			ns
t _R , t _F	Clock rise/fall time			30		30		ns
t _{DS}	Data set-up time	30			65			ns
t _{DH}	Data hold time	30			65			ns
t _{CS}	Clock set-up time	80			120			ns
t _{CH}	Clock hold time	80			120			ns
t _{PHL}	Propagation delay time (ELB output)			60		125		ns
t _{PHL}	Propagation delay time (ERB output)			60		125		ns
t _{PSU}	ELB set-up time	30			65		ELB input	ns
t _{PSU}	ERB set-up time	30			65		ERB input	ns
t _{WDL}	DISPOFFB low pulse width	1200			1200			ns
t _{CD}	DISPOFFB clear time	100			100			ns
t _{PD1}	M - OUT propagation delay time			1000		1200	C _L = 15 pF	ns
t _{PD2}	CL1 - OUT propagation delay time			1000		1200	C _L = 15 pF	ns
t _{PD3}	DISPOFFB - OUT propagation delay time			1000		1200	C _L = 15 pF	ns

8.5 AC characteristics for COMMON driver application

Table 13 AC characteristics for COMMON driver application

 V_{DD} = 5 V ±10%; V_{SS} = 0 V; T_{amb} = -30 °C to +85°C.

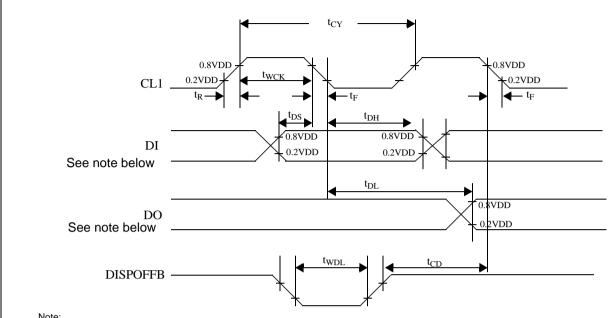
CVMDOL	DADAMETED	VD	VDD=5V±10%			3V±10%	Test	LINUT
SYMBOL	PARAMETER	MIN.	TYP	MAX.	MIN.	MAX.	condition	UNIT
t _{CY}	Clock cycle time	250			500		Duty=50%	ns
t _{WCK}	Clock pulse width	45			95			ns
t _R , t _F	Clock rise/fall time			50		50		ns
t _{DS}	Data set-up time	30			65			ns
t _{DH}	Data hold time	30			65			ns
t _{WDL}	DISPOFFB low pulse width	1200			1200			ns
t _{CD}	DISPOFFB clear time	100			100			ns
t _{DL}	Output delay time			200		250	C _L = 15 pF	ns


80-outputs common/segment driver

CVMPOL	PARAMETER	VD	D=5V±1	0%	VD	D=3V±1	0%	Test	LINIT
SYMBOL	PARAWETER	MIN.	TYP	MAX.	MIN.		MAX.	condition	UNIT
t _{PD1}	M - OUT propagation delay time			1000			1200	C _L = 15 pF	ns
t _{PD2}	CL1 - OUT propagation delay time			1000			1200	C _L = 15 pF	ns
t _{PD3}	DISPOFFB - OUT propagation delay time			1000			1200	C _L = 15 pF	ns

80-outputs common/segment driver

9 TIMING DIAGRAM


9.1 Timing diagram for SEGMENT driver application

SDN8080G Avant Electronics

80-outputs common/segment driver

9.2 Timing diagram for COMMON driver application

Note:

When in single-type interface mode:

- (1) DI=> D2_DL (SHL=L), D4_DR (SHL=H).
- (2) DO=> D4_DR (SHL=L), D2_DL (SHL=H).

When in dual-type interface mode:

- (3) DI=>D2_DL and D3_DM (SHL=L), D4_DR and D3_DM (SHL=H)
- (4) DO=>D4_DR (SHL=L), D2_DL (SHL=H).

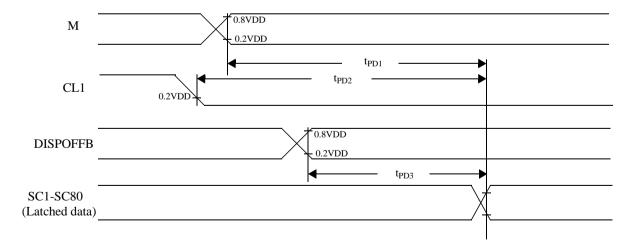


Fig.19 Timing diagram for COMMON driver application.

80-outputs common/segment driver

10 POWER DOWN FUNCTION

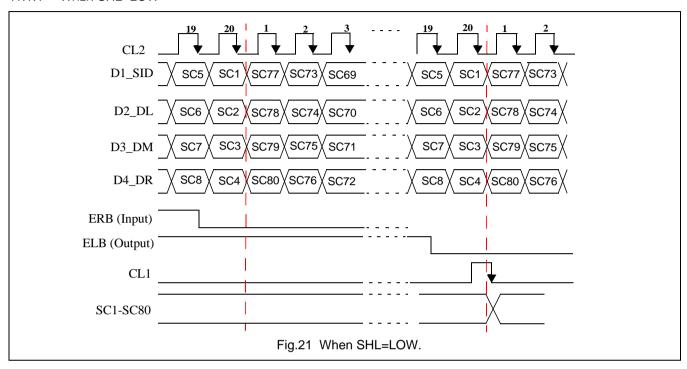
To reduce power consumption, the SDN8080G is sequentially enabled via POWER DOWN mode, when used in cascade in SEGMENT driver application.

Table 14 Power Down function.

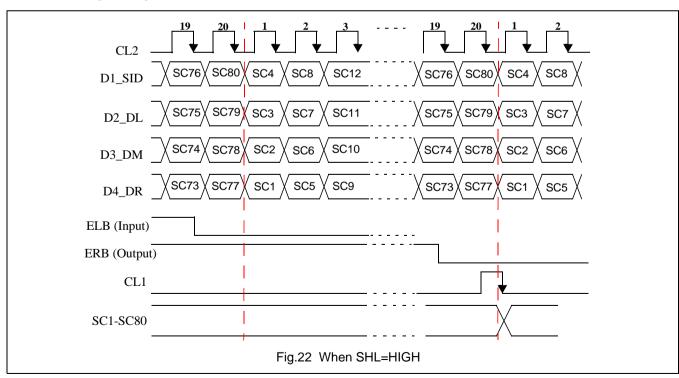
SHL	Enable input	Enable output	current driver status (the driver being enabled)	status of other drivers
L	ERB ELB		While ERB=LOW, current driver is enabled.	Disabled.
Н	ELB	ERB	While ELB=LOW, current driver is enabled.	Disabled.

Note

1. Power Down function is not available when the SDN8080G is used as a COMMON driver.

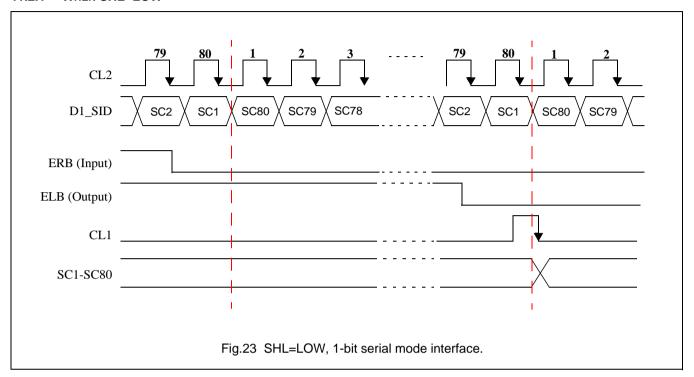


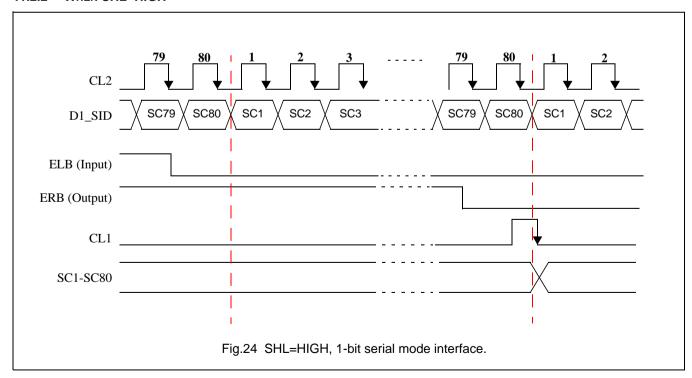
80-outputs common/segment driver


11 OPERATION TIMING DIAGRAM

11.1 4-bit parallel mode interface (SEGMENT driver)

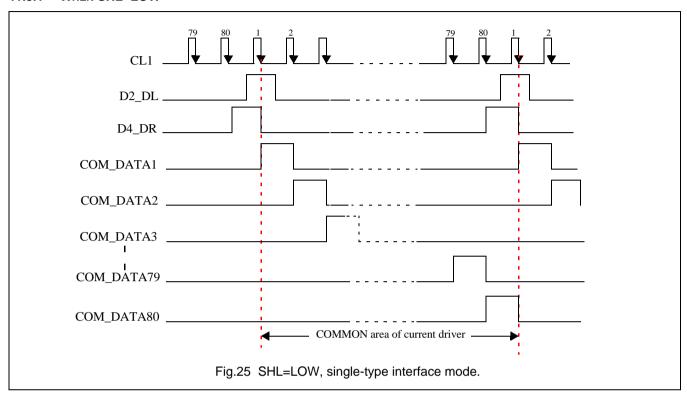
11.1.1 WHEN SHL=LOW

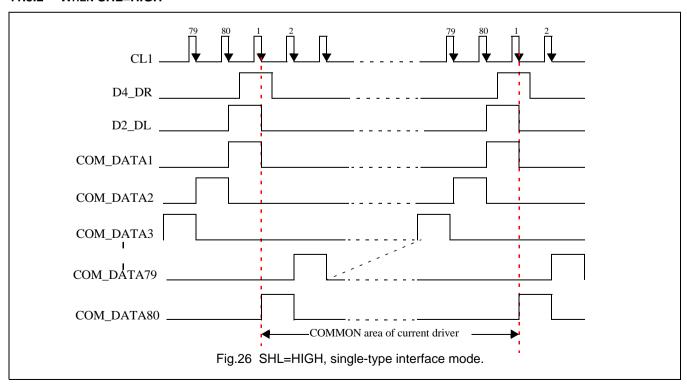

11.1.2 WHEN SHL=HIGH


80-outputs common/segment driver

11.2 1-bit serial mode interface (SEGMENT driver)

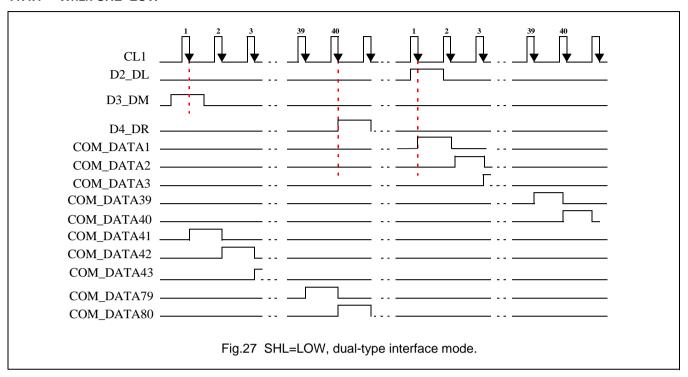
11.2.1 WHEN SHL=LOW

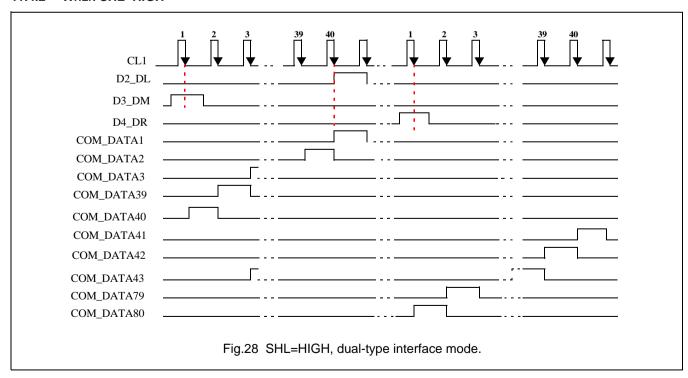

11.2.2 WHEN SHL=HIGH


80-outputs common/segment driver

11.3 Single type interface mode (COMMON driver)

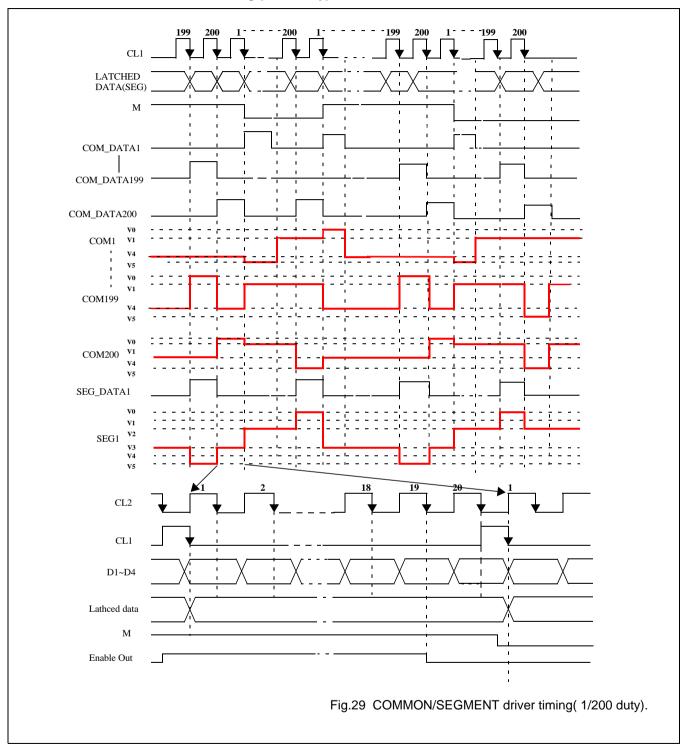
11.3.1 WHEN SHL=LOW


11.3.2 WHEN SHL=HIGH


80-outputs common/segment driver

11.4 Dual type interface mode (COMMON driver)

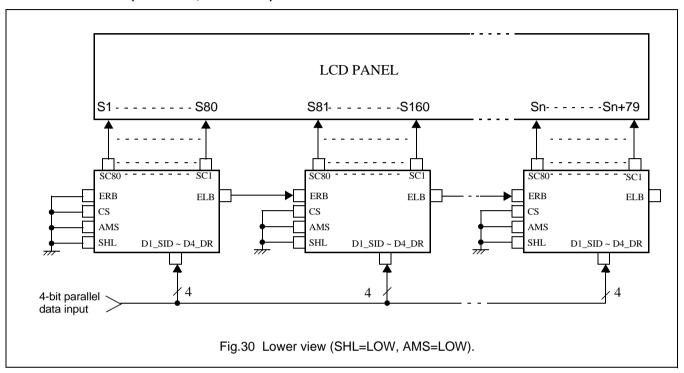
11.4.1 WHEN SHL=LOW



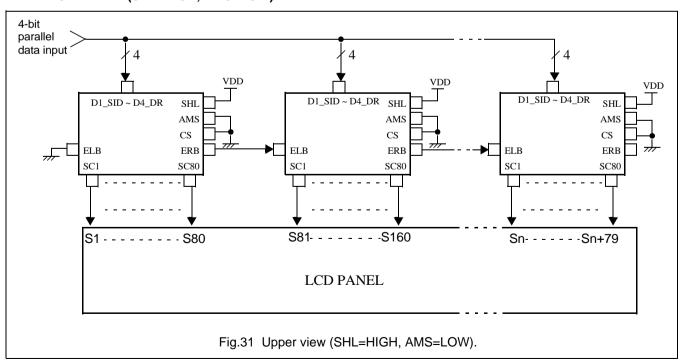
11.4.2 WHEN SHL=HIGH

80-outputs common/segment driver

11.5 COMMON/SEGMENT driver timing (1/200 duty)

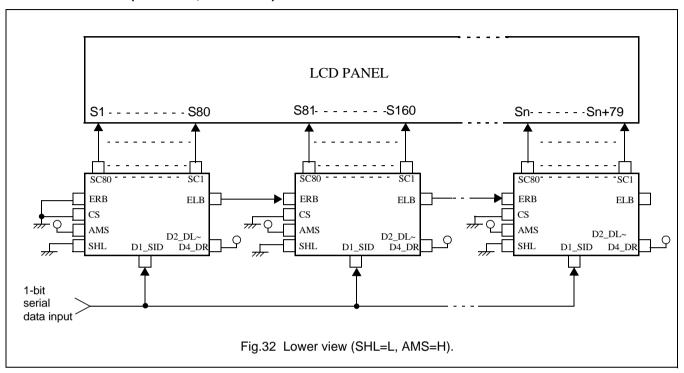


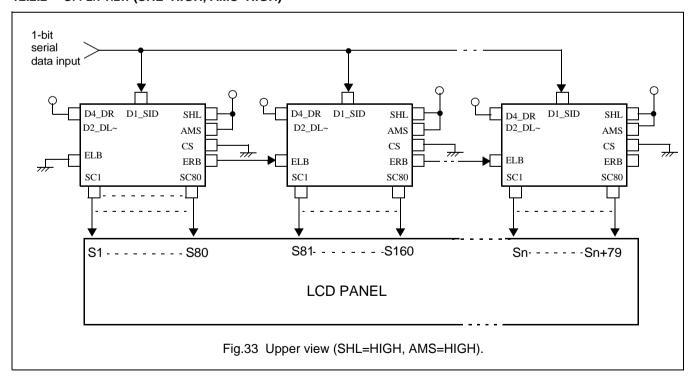
80-outputs common/segment driver


12 APPLICATION DIAGRAMS

12.1 4-bit parallel interface mode (80-outputs SEGMENT driver)

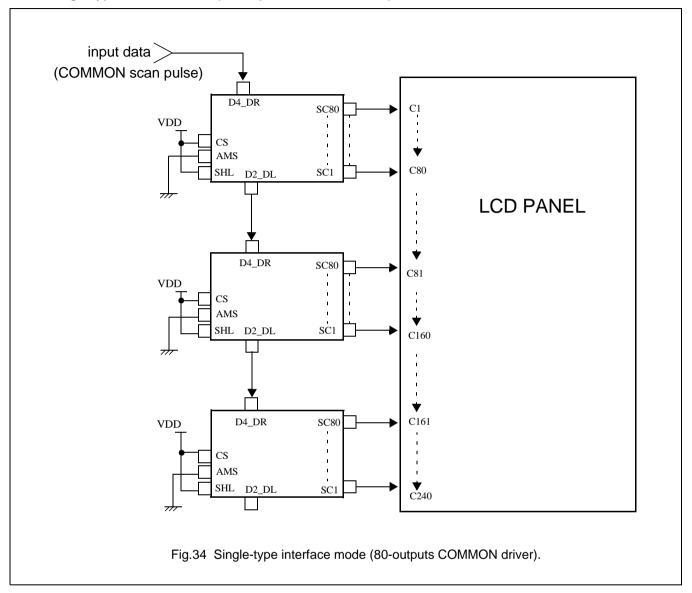
12.1.1 LOWER VIEW (SHL=LOW, AMS=LOW)


12.1.2 UPPER VIEW (SHL=HIGH, AMS=LOW)

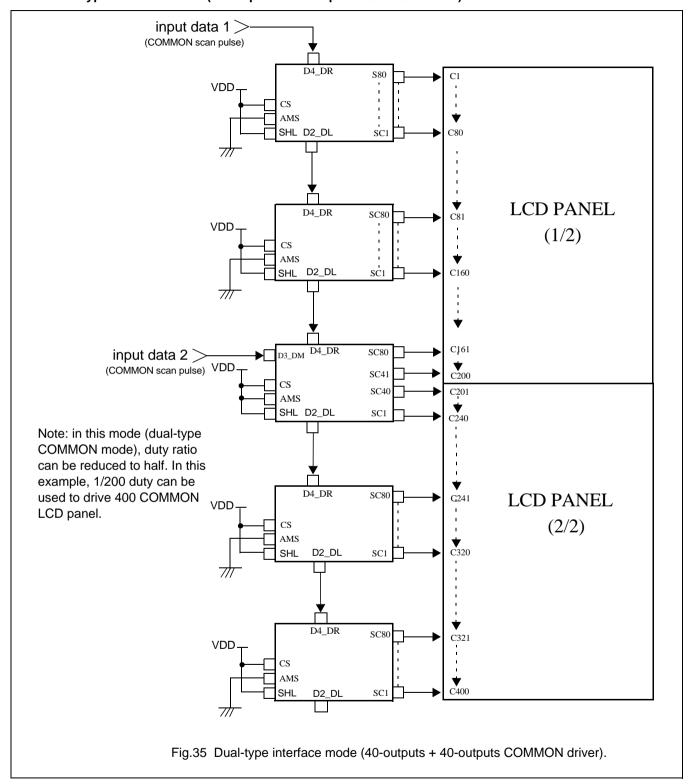

80-outputs common/segment driver

12.2 1-bit serial interface mode (80-outputs SEGMENT driver)

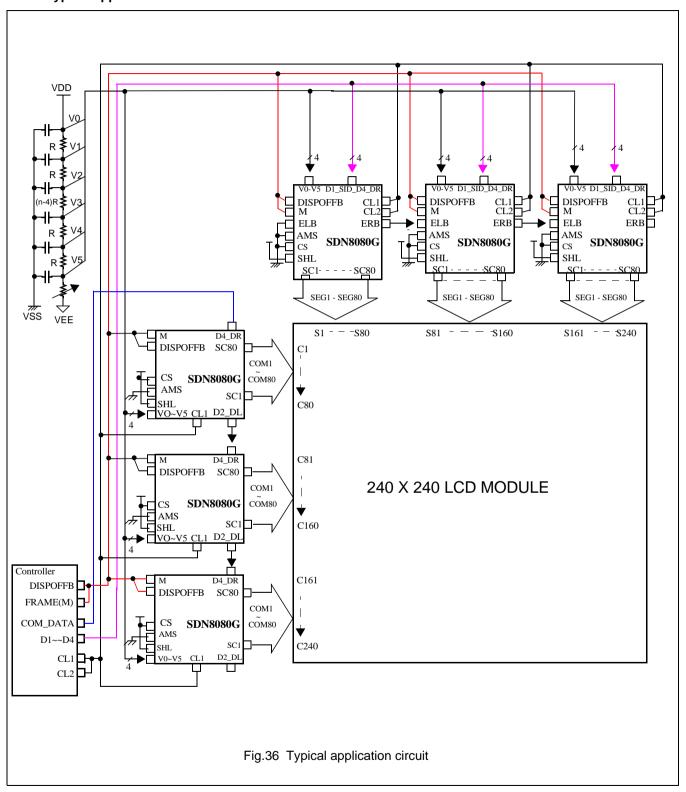
12.2.1 LOWER VIEW (SHL=LOW, AMS=HIGH)



12.2.2 UPPER VIEW (SHL=HIGH, AMS=HIGH)


80-outputs common/segment driver

12.3 Single type interface mode (80-outputs COMMON driver)


80-outputs common/segment driver

12.4 Dual type interface mode (40-outputs + 40-outputs COMMON driver)

80-outputs common/segment driver

12.5 Typical application circuit

80-outputs common/segment driver

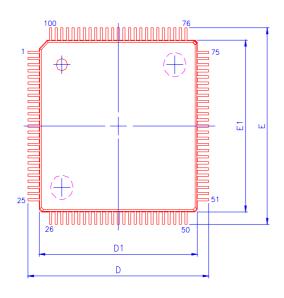
13 PIN CIRCUITS

Table 15 MOS-level schematics of all input, output, and I/O pins.

SYMBOL	Input/ output	CIRCUIT	NOTES
V0, V12, V43, V5, SC1~SC80	I/O	V12 EN3 VEE 77 VDD EN3 V43 VEE 77 VDD EN4 V5	
CS, M, DISPOFFB, SHL, AMS, CL1	Input	VDD VDD VSS W	
CL2, D1_SID, D3_DM	Input	EN VDD VDD VDD VDD VDD VDD VDD VDD VDD VD	

80-outputs common/segment driver

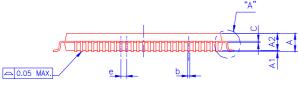
SYMBOL	Input/ output	CIRCUIT	NOTES
ELB, ERB	I/O	VDD VDD VDD VDD VDD Data Enable	
D2_DL, D4_DR	I/O	VDD VSS Data Enable	

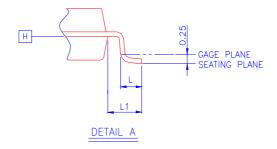

80-outputs common/segment driver

14 APPLICATION NOTES

Application information is provided in another document. Please contact Avant Electronics for application information.

data sheet (v7)


15 PACKAGE INFORMATION 2006 Apr 04



-	
	ΙĦ
	Ų
	U

VARIATIONS (ALL	DIMENS	SIONS	SHO'	WN	IN	MM)	
SYMBOLS		MIN.	NO	OM.		MA:	Χ.	

SYMBOLS	MIN.	NOM.	MAX.				
А			1.60				
A1	0.05		0.15				
A2	1.35	1.40	1.45				
b	0.17	0.20	0.27				
С	0.09	0.127	0.20				
D	16.0	00 BSC±	0.25				
D1	14.0	00 BSC±	0.1				
Е	16.0	00 BSC±	0.25				
E1	14.00 BSC±0.1						
е	0.50 BSC						
L	0.45	0.60	0.75				
L1	1.00 REF						

NOTES:

1.JEDEC OUTLINE:MS-026 BED

2.DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

3.DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H

4.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

SDN8080G LQFP100 Package Outline Drawing STN LCD Driver data sheet (v7)

80-outputs common/segment driver

SDN8080G

16 SOLDERING

16.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high components densities. In these situations reflow soldering is often recommended.

This text gives a very brief description to a complex technology. A more in-depth description of soldering ICs can be provided to our customers upon request.

16.2 Reflow soldering

Reflow soldering techniques are suitable for all QFP packages.

The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, please contact Avant for drypack information.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds, depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

16.3 Wave soldering

Wave soldering **is not** recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer, or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwelling time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

16.4 Repairing soldered joints

Fix the component by first soldering two diagonally- opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

2006 Apr 04 39

STN LCD Driver data sheet (v7)

80-outputs common/segment driver

SDN8080G

17 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Avant customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Avant for any damages resulting from such improper use or sale.

2006 Apr 04 40